SN

v Rey
)

by

International Review of Applied Economics, Vol. 15, No. 3, 2001 vl

Why do Aggregate Production Functions Work?
Fisher’s simulations, Shaikh’s identity and some
new results

JESUS FELIPE & CARSTEN A. HOLZ

ABSTRACT The literature on aggregation has shown that the conditions for successful
aggregation of micro production functions into an aggregate production function are far too
stringent to be believable (Fisher 1969, 1971). Despite this, aggregate production functions
continue being used. The reason is that they seem to ‘work’. This happens, however, because
underlying every aggregate production function is the income accounting identity that links
input and output, i.e. output equals wages plus profits. A simple algebraic transformation
of this identity yields a form that resembles a production function (Shaikh, 1974, 1980).
This paper uses Monte Carlo simulations to study rwo questions. First, how much
spuriousness can help explain the relatively good fits of the Cobb—Douglas production
function? The simulations show that the contribution of spuriousness to a high R* is minor
once we properly account for the fact that input and output data used in production function
estimations are linked through the income accounting identity. It is mostly the link through
this identity that explains the results. Secondly, we study how much factor shares have to
vary in an economy so as to render the Cobb—Douglas production function with a time
trend a bad choice for modelling and estimation purposes. We conclude that the Cobb—
Douglas form is robust to relatively large variations in the factor shares. Whar makes this
form often fail are the variations in the growth rates of the wage and profit rates.

1. Introduction

Over 30 years ago, Franklin Fisher (1969, 1993) showed, in a series of seminal
papers, that aggregate production functions should not work in empirical applica-
tions. The reason is that the conditions for successful aggregation are so stringent
that one cannot expect these conditions to hold for real economies. The most
general conditions state that the existence of an aggregate capital stock requires that
the production functions of individual firms differ at most by capital-augmenting
technical differences; the existence of a labour aggregate requires that every firm
hire the same proportions of each type of labour; finally, the existence of an
aggregate of output requires that every firm produce the same market basket of
outputs.
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Despite Fisher’s results, economists have continued using the aggregate
production function in both theoretical and applied works. It is difficult to know
why. Our conjecture is that sometimes they appear to work when estimated
econometrically (tested?). By this we mean, following Lucas (1970) and Fisher
(1971), that the fit obtained is high, the elasticities are close to the factor shares in
output, and the marginal productivity of labour explains the wage rate well. This
observation led Fisher (1971) to study, using simulations, the empirical conditions
under which the aggregate Cobb—Douglas function would yield good results. In his
pioneering simulation work, Fisher concluded that the Cobb—~Douglas production
function would work well whenever factor shares were constant. This is not a trivial
observation, for Fisher had generated aggregate series violating the aggregation
conditions. Thus, he was surprised to see that the aggregate Cobb-Douglas
function works under the circumstances explained above.! The reality, however, is
that when one estimates aggregate production functions, results tend to be rather
poor, in particular in time series analyses. Very seldom are results consistent with the
neoclassical theory. This was recently pointed out by Sylos Labini (1995).

Shaikh (1974, 1980) explained why what Fisher had discovered was due to
something rather surprising and discomforting. Shaikh showed that underlying
Fisher’s (1971) simulations was the accounting identity that links output to the sum
of the wage bill plus overall profits. It can be shown that a simple algebraic
transformation of this identity yields a form that resembles a production function.
Shaikh (1980) showed that when Fisher generated the series of output and inputs
for the simulations, he had linked them through the income identity. No wonder the
aggregate production function has to work econometricallyl More recently,
McCombie (1987), McCombie & Dixon (1991), Felipe (2000), and Felipe &
McCombie (2001a) have taken up the issue again and provided empirical evidence
that all aggregate production functions do is to track the income accounting
identity.?

This paper revisits the problem. The reason is that today economists still define
the aggregate production function as a summary of the aggregate technology
(Mankiw, 1997); estimate econometrically aggregate production functions (believ-
ing that the good fits reinforce their findings);* and derive implications from such
results. Examples of this practice are the literature on growth, externalities and
increasing returns (Romer, 1987; Hall, 1990; Caballero & Lyons, 1992; Mankiw er
al., 1992; Basu & Fernald, 1995, 1997);* or the literature on the measurement on
infrastructure productivity (Aschauer, 1989; Munnell, 1992).

We use Monte Carlo simulations and a Cobb—Douglas production function to
answer two questions. First, how much does spuriousness help explain the high fit
of the production function? This matters because economists today tend to estimate
the production function in first differences in order to eliminate the possible
spuriousness inherent in the estimation in levels, assuming output and input are
difference stationary processes (or an error correction transformation if they find
the series to be cointegrated). However if, as indicated above, the aggregate
production function is essentially a transformation of an identity, the problem of
spuriousness should not matter, and it should not make any difference whether the
equation is estimated in levels or in first differences.

The second question is: how much do factor shares have to vary so that the
Cobb-Douglas production function yields poor results? Fisher (1971) concluded
quite correctly that the Cobb-Douglas function works well when factor shares are
constant. In addition, by implication, it does not work when factor shares are not
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constant. But how much variation do we need to observe in the factor shares? An
interesting aspect, well known by practitioners, is that if one fits a Cobb—Douglas
production function with a time trend to a data set, most likely the results will be
‘bad’ despite the fact that factor shares are (sufficiently) constant. This has often led
economists to open Pandora’s box and search for all sorts of reasons. This paper
offers a parsimonious explanation for these findings.

In doing this, the present paper generalizes Fisher’s experiments in two
obvious ways. First, there is an explicit use of the accounting identity in the
generation of the series, thus acknowledging Shaikh’s explanation. And second,
we take care of the statistical properties of the data (i.e. the possibility of unit
roots in some of the series), something not well understood in the early 1970s.
The rest of the paper is structured as follows. In Section 2 we summarize
Shaikh’s arguments. It will be shown that any production function can be
derived as a transformation of the said income accounting identity. Sections 3
and 4 discuss the above two questions and the simulation results. To keep
matters simple we use the standard Cobb—Douglas production function with a
time trend. Once the arguments in Section 2 are understood, it will be clear that
the choice of this form does not affect the substance of the argument. The same
could be done with the CES or translog production functions, but at the cost of
increasing the complexity of the simulations. Section 5 provides empirical
evidence. Section 6 concludes.

2. Production Functions and the Accounting Identity

To begin with, and to motivate the questions posed, we provide suggestive empirical
evidence. Table 1 shows the OLS estimates of a Cobb—Douglas production function
for two US manufacturing branches, in growth rates (equations A), and in levels
(equations B). The poor results displayed here are ‘standard’; in particular, the
finding of an insignificant or a negative elasticity of capital (Klette & Griliches,
1996; Griliches & Mairesse, 1998). It is also worth mentioning the substantial
differences in R? and Durbin—Watson (DW) statistics between the regressions in
growth rates and in levels; in the latter regressions R? is higher, and the DW is lower.
The most likely argument is that this is due to the effect of spuriousness. As is well
known, in regressions of integrated variables (as economic variables in levels often
are) the R? statistic tends to one in probability, while the DW tends to zero also in
probability. Likewise, the estimated parameters are very different. This paper asks
whether there is a parsimonious interpretation for these results, and whether what
is at stake is an econometric problem, or something different. We shall return to
these results in Section 5.

To understand the claims made in the introduction, let us show how any
production function can be derived as an algebraic transformation of the income
accounting identity. This identity can be written as

Qt = szt + kK, (1)

where Q, w, v, L and K denote real value added, the average real wage rate, the
average profit rate (% per annum), employment, and value of the stock of capital,
respectively. Expression (1) holds as an identity for every period. It is not Euler’s
Theorem. It states that income equals the sum of the wage bill plus all types of
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Table 1. Cobb-Douglas production function

SIC 22: Textile and mill products

A) g = o = v3 I + ik,

¢ Y1 Y2
0.048 1.45 -0.617
(5.71) (7.37) (=2.01)

R? = 0.653; DW = 1.89

B)InQ, =C+ g+ vy InL, +v,InK

Constant ¢ Y1 Yo
3.22 0.05 1.80 -0.62
(5.43) (12.79) (10.45) (-4.75)

R? = 0.976; DW = 1.24

SIC 36: Electric and electronic equipment

(A) 4 =9 + Y3 Zt + V4kt

¢ Y1 Y2
0.075 1.165 -0.825
(4.46) (11.00) (-2.57)

R? = 0.806; DW = 1.845

B)InQ =C+ ¢t + vy lnl, +y,InkK

Constant ¢ Yi Yo
3.20 0.03 0.91 0.05
(1.72) (2.93) (10.21) (0.26)

R? = 0.992; DW = 0.75

Data for the U.S. for 1959-91.

profits. It does not assume constant returns to scale, or perfect competition. It holds
in every type of market. The operating surplus (i.e. all profits on all types of capital
goods) is written as the ex-post average profit rate (not the rental price of capital)
times the value of the stock of capital. In the words of Samuelson: ‘No one can stop
us from labeling this last vector [residually computed profit returns to “property” or
to the non-labour factor] as (RC)), as J.B. Clark’s model would permit — even
though we have no warrant for believing that noncompetitive industries have a
common profit rate R and use leets capital (C;) in proportion to the (Pyg; — W;L))
elements!” (Samuelson, 1979, p. 932).°



Why do Aggregate Production Functions Work 265

Now let us rewrite Equation (1) in growth rates (lowercase letters denote the
growth rates of output, labour and capital, and "~ denotes the growth rates of the
wage and profit rates) as

q: = azwt + (1 - az);z + atlt + (1 _az)kz = ¢ + a[lt + (1 _ar)kz (2)

where a, = w,L/Q, and 1 — a, = rK/Q, are the labour and capital shares,
respectively, in total output, and aWw, + (1 — a,)¥, = ¢, is the weighted average of the
growth rates of the wage and profit rates (his expression will play an important part
in the arguments).

Assume, without affecting the substance of the argument, that factor shares are
constant over time, i.e. @, = a, and that wages and profit rates grow at a constant
rate, i.e. 7, = #and W, = W, where r, = rpe” and w, = wye™ (departures from these
assumptions will be discussed below). Under these assumptions, equation (2)
becomes

Q,=a\7v+(1—a)?+ai,+(l—a)f<t=cp+ai,+(l—a)f<, (3)
where ¢ =aw + (1 —a)7 €))
Integrating Equation (3) leads to
In(Q,) =¢t+aln(L,) + (1 — a)In(K) +C (5)
where C is the constant of integration. And taking antilogarithms yields
Q, = Ael@Vr-aija Kl-a = feot [a KI-2 (6)

where A is also a constant. What is Equation (6)? Given our derivation, it must be
the accounting identity, Equation (1), rewritten under the assumptions of constant
factor shares and constant growth rates of the wage and profit rates. The interesting
aspect is, of course, that it is identical to the Cobb—Douglas production function
with constant returns to scale and a ‘neutral’ time effect, the coefficient of which has
been traditionally interpreted as the rate of total factor productivity (TFP) growth.
The above derivation shows that if the assumptions of constant factor shares and
constant growth rates of the wage and profit rates are correct, the econometric
estimation of the rewritten accounting identity in logarithms, that is, of

ln(Qt) =a t P + Y1 ln(Lt) + Y2 ln(Kz) + U, (7)

where u, is the error term, must yield a perfect fit (i.e. R?> = 1 and », = 0) because
it is an identity. The income identity is, of course, compatible with any aggregate
production technology, or lack of it, but will give a perfect fit to a putative Cobb—
Douglas production function as long as factor shares are constant. Factor shares can
be constant for many reasons, such as a constant mark-up on unit labour costs or
the Kaldorian theory of distribution (Kaldor, 1956), both of which do not depend
on an underlying Cobb—Douglas production function. Should this be the case, the
data will indicate that a Cobb—Douglas form is the correct one even though the true
underlying technology is, for example, fixed coefficients.

By implication, if factor shares are not (sufficiently) constant, and/or wage and
profit rates do not grow at constant rates, estimation of (7) will yield poor results.
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This way, Shaikh (1980) was able to show that since Fisher (1971) had used the
identity (1) to generate the series (and imposed constant factor shares), his
simulations with the Cobb-Douglas function had to yield high fits, and the
estimated parameters had to be very close to the factor shares, even though the
capital series had been generated violating the aggregation conditions. Fisher’s
observation that the aggregate Cobb—Douglas function works when factor shares
are constant despite violating the aggregation conditions was easily explained.®

A number of further implications are the following. (i) The coefficient of the
time trend, ¢ (the proxy for the rate of technological progress), equals the
weighted average of the constant growth rates of the wage and profit rates, i.e.
Equation (4). This matters for explaining the simulation results, in particular
those in Section 4. (ii) The estimates of y; and -y, in Equation (7) must equal the
constant shares of labour and capital, i.e. a and (1-a). This implies that the values
of the factor shares determine the values of the output elasticities in a statistical
sense, rather than the other way around for economic reasons (e.g. factor shares
are paid their marginal products under competitive conditions). (iii) v; plus y,
must add up to 1, thus showing putative ‘constant returns to scale’. However, this
is due to the underlying accounting identity, and does not imply that, in actual
production, returns to scale are constant. They might or might not be. (iv)
Regressors’ endogeneity as well as the statistical properties of the series (i.e. the
underlying trend and the possibility of cointegration) are issues of secondary
nature (if important at all) since we are estimating an accounting identity (this is
further studied in Section 3).7 (v) If, in practice, we do not obtain the identity it
must be because one or both assumptions regarding factor shares and the growth
rates of the wage and profit rates do not hold. If factor shares in the economy
under consideration vary, or if the growth rates of the wage and profit rates are
not constant (i.e. ¢, is not constant) then we need to hypothesize different paths
(probably more complex), which will lead to other ‘production functions’ (see
Felipe, 2000; Felipe & McCombie, 2001a, for the translog and CES cases).
However, the general argument remains: all we are doing is rewriting the
accounting identity. Suppose, for example, that in the economy under considera-
tion wage and profit rates are constant, i.e. w,=0 and 7, =0 (instead of growing at
a constant rate, as assumed before). Substitution into Equation (2) implies ¢ =0.
Then the income accounting identity can be rewritten as a Cobb-Douglas
function without the time trend. Or suppose factor shares, instead of being
constant, follow a path a,=f(InL, InK,) suchas g, = a; + a, In K, + a3 In L,
(and similarly for capital’s share). Then, substitution of this path into Equation
(2) and integrating will yield a translog production function. We must stress the
context of these arguments: most likely an aggregate production function cannot
be derived theoretically, and yet we fit one and it works. Why? The reason is that
all aggregate production functions are different approximations (depending on the
paths of the factor shares, wage and profit rates) to the income accounting
identity.®

3. How Far can Spuriousness go to Explain the Fit of the Cobb-Douglas
Production Function

This section studies the effects of the spurious regression phenomenon in the case
of production function estimations. Nelson & Kang (1984) and Durlauf & Phillips
(1988) discussed the econometric implications of including a linear time trend as
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one of the right-hand side variables in the regression of one difference stationary
process (e.g. output) on one or more unrelated difference stationary processes (e.g.,
labour and capital). Using simulation analysis, Nelson & Kang (1984) showed that
high R? values and significant coefficient z-values are due to spurious detrending.
From the economic point of view, the trend is included in the production function
as a measure of technological progress. From the econometric point of view,
however, if output and inputs are difference stationary processes (DSP), the
regression is spurious and should therefore be run in first differences. Only if all
time series are trend stationary processes (TSP) is inclusion of a time trend
econometrically acceptable.

Nelson & Kang made a reference to the case under study, namely, the
production function. They ran the regressionY, = a + Bz + v X, + u, °. .. where
{Y,} is a nonstationary variable such as output, {X,} is a nonstationary independent
variable (or set of such variables) such as a production input, and {x,} is a sequence
of disturbances. The role of time is to account for growth inY not attributable to X,
for example, the impact of technological change on output’ (Nelson & Kang, 1984,
p. 78). In order to obtain a lower bound for the R? value, Nelson & Kang created
Y and X as independent zero-drift random walks with unit variance Normal
distributions, and then regressed Y on a constant, time and X. Across 1000 runs
they obtained a mean R? value of 0.501, the time coefficient  was significant at a
nominal 5% level in 83% of the runs, and the coefficient of X, :/, was significant at
a nominal 5% (1%) level in 64% (55%) of the runs.

We extend Nelson & Kang’s (1984) simulations to take into account that the
output and inputs series used to estimate the production function Q, = A, F(K,, L,)
are linked through the accounting identity (1). We report the results of the
simulation experiment which analyses how much of the R? value observed in the
estimation of the Cobb—Douglas function with an exponential time trend can be
explained by spuriousness. The results are shown in Table 2.

The first set of simulations simply extends Nelson & Kang’s (1984) analysis for
the case of three unrelated random walks.? (In this and the next set, results are
shown for estimations in levels and first differences). In the second set the three
random walks are related through the accounting-identity-link Equation (1) and the
definition of the labour share, i.e. a, = w,L,/Q,. The theoretical derivation in Section
2 was based on certain paths for the variables (e.g. constant growth rates of the wage
and profit rates). It would be meaningless, however, to run the simulations with
those exact paths, since we know that we would be estimating an accounting
identity, and thus R? must be 1, independently of the statistical properties of the
data. Besides, if the data exactly satisfied the assumptions about the factor shares,
wage and profit rates, and we tried to estimate a Cobb-Douglas production
function with a time trend, we would have the problem of perfect multicollinearity
(this can be easily checked by substituting the variables in the identity into the
production function). Therefore, we explore what occurs when the data follow other
paths (e.g. wage and profit rates are random walks). This is not incompatible with
the analysis in the previous section, for the accounting identity continues holding.
The third set extends the results to the case where all variables are TSP (results in
levels). All statistics cover 1000 runs, where each run has 100 observations. It must
be emphasized that the precise values of the variables in the simulations are of no
consequence. All that matters is that the identity is imposed on the series (one of the
five series must be used to ‘close’ the identity. We chose K). It is also important to
emphasize that, unlike Fisher (1971), there is no explicit aggregation process.
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Table 2. How far can spuriousness go to explain the fit of the Cobb—Douglas production

function?
Number of Number of
runs runs
(out of 1000, (out of 1000,
5% signif. 5% signif.
level) level)
With With
Standard sign. Rejecting Standard sign. Rejecting
Statistic Mean deviation t-val. CRS Mean  deviation t-val. CRS

All variables are DSP created as X, = p + X,_;, + € ¢, ~ N(0,1)

Spurious regression Regression in first differences

Sets 1-2 IH(Q,) = o+ Bl + ylln(Lz) q = B + 'Yllz + VZkz + Uy
+ ‘YZIH(KZ) + U,

Set 1 O, L and K are RW with Q, = K, = L, = 1000, o = 0.

R? 0.575357 0.242049 902 0.020858 0.020051 1000
o 6.882530 3.993195 901

S.e.(o) 1.004910 0.425451 0.000002 0.000007

B -0.000008 0.000120 771 0.000002 0.000101
S.e.(B) 0.000016 0.000008 0.000100 0.000487

Y1 0.014979 0.396637 610 0.000754 0.107413 64
S.e.(yy) 0.103367 0.041911 0.101153 0.010787

Y2 -0.011447 0.415785 627 0.002655 0.099560 46
S.e.(y,) 0.101244 0.039940 0.100753 0.010426

DW 0.327604 0.141562 1.990242 0.203015

Set 2 w, rand L are RW with wy = r, = Ly = 1000, p = 0.

0, = wl/a, and K, = (Q, — w,L,)/r, where a, = a = 0.6.

R? 0.873451 0.115429 623 0.752246 0.043172 55

o 7.654263 1.964840 997
S.e.(a) 0.498156 0.198476

B —0.000003 0.000085 819 0.000001 0.000070 47
S.e.(® 0.000012 0.000006 0.000071 0.000005
Y1 0.500462 0.350018 857 0.500805 0.089568 999
S.e.(vy) 0.087817 0.035798 0.087681 0.008813
Y2 0.494506 0.202831 964 0.498748 0.053252 1000
S.e.(vy2) 0.051409 0.021679 0.050449 0.005016

DWW 0.322063 0.140261 1.999682 0.198818




Why do Aggregate Production Functions Work 269

Table 2. (Continued)

Number of Number of
runs runs
(out of 1000, (out of 1000,
5% signif.t 5% signif.t
level) level)
With With
Standard sign. Rejecting Standard sign. Rejecting
Statistic Mean  deviation t-val. CRS Mean  deviation t-val. CRS
Set 3 All TSP variables are created as X, = 1000 exp(0.05 ¢ + z, ~ N(0,1)
Regression: In(Q,) = a + Bz + viln(L) + v,In(K) + u,
Without accounting identity link; With accounting identity link;
Q, L and K are TSP w, ¥ and L are TSP

Ql = w[LLJO'6! Kz = (Qt_ szz)/rz

R? 0.684621 1.044977 1000 0.952968 0.007881 60
a 7.823030 1.209966 1000 8.610850 0.603917 1000
S.e.(w) 1.157776 0.119029 0.586601 0.061528

B 0.049195 0.008299 1000 0.049726 0.004558 1000

S.e.(®) 0.008011 0.000824 0.004375 0.000444

Y1 0.004402 0.105725 52 0.502638 0.090402 1000
S.e.(y;) 0.102048 0.010554 0.088039 0.009167

Y2 0.008073 0.102499 52 0.499985 0.051964 1000
S.e.(y2) 0.101539 0.010273 0.051274 0.005434

DWW 2.019948 0.196317 2.019756 0.193111

Mean denotes the mean value across 1000 runs. Standard deviation denotes the sample
standard deviation of the 1000 mean values. Mean S.e. of a parameter denotes the mean of
the 1000 standard errors. Standard deviation of the S.e. of a parameter denotes the sample
standard deviation of the 1000 standard errors. v, = u, — u, ;.

However, this is inconsequential. The reason is that since the data are linked
through the income accounting identity, we know that the latter holds at all levels of
aggregation.

The first set of results is a simple extension of Nelson & Kang’s experiments.
It constitutes the ‘lower bound’ case for three unrelated random walks (two
explanatory variables). Compared with Nelson & Kang’s regression with one
explanatory random walk, the R? value is up slightly at 0.5754 (from 0.501). All
other results resemble those in Nelson & Kang’s regression: parameter estimates are
not close to any realistic factor share; there are clearly no constant returns to scale;
and differencing leads to a negligible R? value.'?

The second set of results is based on random walks generated according to the
accounting identity (1) and the definition of the labour share. In this set and in the
following we arbitrarily choose a value for the labour share of 0.6. Since the growth
rates of the wage and profit rates in this set are not constant (w, and r, are random
walks, and thus Equation (6) is not the correct functional form that corresponds to
the identity expression (1)), the R? value is not equal to one and there is still some
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scope for spuriousness to improve the R? value (by 0.12) when going from the non-
spurious regression in first differences (R? value of 0.7522) to the spurious
regression in levels (R? value of 0.8735).!!

Regarding the estimated parameters, we observe the following. First and
foremost, the parameters can be interpreted in terms of factor shares. Second, given
the existence of the accounting identity link, taking first differences neither changes
significantly the value of the parameters nor reduces the significance of these
parameters, unlike in Set 1 (this occurs because the labour share is maintained
perfectly constant). Finally, the number of runs with significant -values (at the 5%
significance level) for the parameters of capital and labour is up compared with the
previous set, and close to 1000.

Since the growth rates of the wage and profit rates are not constant, constant
returns to scale are rejected in 62.3% of all runs in levels; this percentage is lower
than in the previous set where the accounting identity did not hold. The mean sum
of the parameters of labour and capital across 1000 runs is 0.985042 with a
standard deviation of 0.276800, a maximum value of 2.097430 and a minimum
value of 0.008175. After differencing, the mean sum of the parameters of labour and
capital is 0.999553 with a standard deviation of 0.069087, a maximum value of
1.234804 and a minimum value of 0.763048. First differencing reduces this
number to a more appropriate 5.5%. The effects of spuriousness are further visible
in the regression in levels in two respects. First, the Durbin—Watson statistic is very
low at 0.3221. Second, the parameter of time, 3, traditionally interpreted as the rate
of technical progress, is significantly different from zero at the 5% level in 819 runs,
despite the fact that the mean is zero (the weighted average of the growth rates of the
wage and profit rates must be zero because w, and r, are random walks). First
differencing then yields perfect results with a Durbin—-Watson of 2, while B is
significantly different from zero in 47 runs only.

For the third set of results variables are created as TSP, subject to the same
size of (distinct) shocks and the same growth rate of an arbitrarily chosen 5%.2
Since all variables now are TSP, the time trend is correctly included in the
regression, and, unlike in the previous sets, the two regressions are not subject to
the problems of spurious detrending. We report the results for the case that all
variables are unrelated versus the case that the variables are linked in accordance
with the accounting identity; the effects of imposing the accounting identity link
are similar to those obtained for DSP variables. Once the accounting identity link
has been instituted, R? improves from 0.684 (i.e. a ‘lower bound’ for the non-
spurious regression) to 0.9530, constant returns to scale can no longer be
rejected, and, again crucial, coefficient estimates turn highly significant and
‘credible’ in terms of a factor share interpretation. The parameter of time is
correctly estimated. It equals 0.6x5% + 0.4x5% = 0.05 (see Equation (4)) where
5% is the assumed value of the growth rate of the wage rate as well as that of the
profit rate.

Finally, to take into account the possibility of cointegration among the series we
fitted a dynamic reparameterization in error correction model (ECM) form of Set
2 with two lags in output and inputs (results available upon request).!? Following
the arguments in Section 2, it can easily be shown why this form is subject to the
same issues discussed there, and why it can be interpreted in terms of the income
identity. The results show a slight increase in the R? value (to 0.774) compared to
the regression in first differences, but no change in the (long-run) parameters of
capital and labour.
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The conclusion of these Monte Carlo simulations is that if the profit rate, wage
rate, and labour are difference stationary processes, then spuriousness may explain
a small part of the good fit of a production function estimation, but obscure some
issues such as constant returns to scale. The accounting identity link in the
simulations turns out to be the major force leading to a high R? value, independent
of the issue of spuriousness, and only the accounting identity link can explain the
proximity of the estimated parameters to the factor shares, and thus the emergence
of constant returns to scale. The importance of this last point must be stressed. Only
the link of the variables through the identity gives rise to parameter values close to
the factor shares. And this is why the generation of ‘independent’ random walks (as
in Nelson & Kang, 1984, or in set 1 in Table 2) or trend stationary variables (as in
set 3 inTable 2 here) yields parameter values that cannot be interpreted in terms of
a Cobb-Douglas production function. Paradoxically, Fisher (1971) did not report
the summary of the estimates he obtained.!* There is no doubt, however, that,
overall, the estimates he obtained had to be close to the shares. The reason, as
discussed in Section 2, is that Fisher linked the series using the identity. Our
simulations show that without this link, there is no way that the estimates will be
anywhere close to the shares.

4. When will the Cobb-Douglas Function not Work?

We have seen that if factor shares and the growth rates of the wage and profit rates
are perfectly constant, the Cobb—Douglas form is observationally equivalent to the
accounting identity. This explains the results of Fisher (1971). In his seminal paper,
Fisher concluded that the aggregate Cobb—Douglas production function would
yield good results when factor shares were relatively constant, even in case such
aggregate production function did not exist. The arguments in Section 2 explain
why this had to be the case: if factor shares happen to be constant, the underlying
accounting identity can be rewritten as a form that looks like the Cobb—Douglas
form.

In this section we ask the following question: how much do the two
assumptions of constant factor shares and constant growth rates of the wage and
profit rates have to be relaxed for the regression estimation results to no longer be
‘good’? (As indicated above, if factor shares were perfectly constant, and wage and
profit rates grew at perfectly constant rates, one would not be able to obtain the
OLS estimates of a Cobb-Douglas with a time trend due to perfect multi-
collinearity.) To answer this question, the two assumptions are now relaxed step by
step with the economy being simulated again using 1000 runs, each with 100
observations. It is important to remember that, in Section 2, we showed that the
coefficient of the time trend is definitionally the weighted average of the growth rates
of the wage and profit rates (Equation (4)). Likewise, the fact that factor shares now
vary does not imply that the accounting identity does not hold (Equation (2)
remains). All it means is that the assumptions used to derive Equations (3)—(6) do
not hold exactly. Therefore, if one fits Equation (6), we should not expect a perfect
fit, and elasticities will not equal the factor shares. In this case, we need another path
to track the factor shares. This will lead, as we saw above, to another production
function (i.e. to another form of the identity). What we ask here is what occurs when
factor shares vary, but one nevertheless fits the Cobb-Douglas form. Will it
work?
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Table 3. Overview of the simulations

Regression In(Q) = a + ¢ + v, In(l) + v, In(K) + u,

Accounting identity link 0, = wl, K = 0, wl,
a, £

Labor share process a, = 0.06 + 0.9a, | + zy,, 21, ~ N(0,5d,?), sd,

{0.001, 0.01, 0.1}, and @, = 0.6

All variables are DSP All variables are TSP Mixed case

r, = 1 + 32

r, = 1e001t* 2 =+ o2,
23, ~ N(0O,8d;?), 1y = 1 23, ~ N(0,8d;%), 1y = 1 25, ~ N(0,8d,%), 15 = 1
W, = w,_; + 2z, w, = le0.0St+z;, w, = 160.05:+z3,
23, ~ N(0,sd52), wy = 1 23, ~ N(0,5d52), wy = 1 23, ~ N(0,5d52), wy = 1
Lt - Lt—l + 24[2 L[ = 160'025t+2“" Lt = leOA0251+z4,
24, ~ N(0,8d47) 24, ~ N(0,5d47) 24, ~ N(0,5d,?)
sdy = 0.01, L, = 1 sdy = 0.01, L, = 1 sdy = 0.01, L, = 1

Table 3 presents an overview over the three types of simulations conducted.
We fit a Cobb-Douglas production function in levels including a time trend. In
the first type of simulation, labour, profit rate, and wage rate are difference
stationary processes (DSP); in the second type these variables are trend stationary
processes (TSP); and in the third type, labour and wage rate are TSP, while the
profit rate is DSP. Since the results of these three simulations do not differ
systematically we focus in the following on the third one only. As before, once the
accounting identity is imposed, the precise values of the wvariables are
inconsequential.

Table 4 translates various shock sizes into characteristics of the time series of
the labour share, profit rate growth, wage growth, and labour growth.!> The most
important results are reported in the graphs in the Appendix for a standard
deviation of the shock to the labour share of sd; = 0.01. We report 12 graphs:
coefficient of time and its standard deviation; coefficient of labour and its standard
deviation; coefficient of capital and its standard deviation; number of runs with
significant time, labour, and capital coefficients; R?; Durbin-Watson; and number
of runs rejecting constant returns to scale.

For each case, four time series are created, namely, employment, labour share,
profit rate and wage rate. Output and capital stocks are derived from these four time
series through the accounting identities. Throughout all simulations the standard
deviation of the shock to employment (sd,) is held at 0.01, with an imposed mean
growth rate of 2.5% and an initial value L, =1, yielding a mean of mean labour
growth rates of 2.55% and a mean standard deviation of labour growth rates of
0.0209 (bottom of Table 4). The choice of initial value has no influence on growth
rates and their variation.



Table 4. Characteristics of the simulated variables in terms of shock sizes
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Mean Mean
of standard
Standard deviation of shock means deviation  Redraws
Labour share a, = 0.06 + 0.9 a,, + 2y, ap = 0.6, z;, ~ N(0,5d,?)
sd; =0 0.6000000 0.000000 0
sd; = 0.001 0.6000013 0.001998 0
sd; = 0.005 0.6000045 0.010003 0
sd; = 0.01 0.599955 0.019940 0
sd, = 0.05 0.598241 0.100183 0
sd; = 0.01 0.582391 0.182977 1808
sd; = 1 0.502730 0.283634 169530
Growth rate Where the profit rate is created as:
of profit rate re = rey F 2o 1 = 1, 25, ~ N(0sd.,?), sd, = e*
ky, = ~11  sd, = 1.670%107° 0.000000 0.000017 0
ky = -10  sd, = 4.540*107° 0.000000 0.000045 0
k, = -9 sd, = 1.234*1074 0.000000 0.000123 0
k, = -8 sd, = 3.355%107* 0.000001 0.000334 0
ky, = -7 sd, = 9.119*107* 0.000006 0.000910 0
k, = -6 sd, = 0.002479 0.000008 0.002484 0
k, = -5 sd, = 0.006738 0.000021 0.006816 0
k, = -4 sd, = 0.018316 0.002658 0.039559 121
k, = -3 sd, = 0.049787 0.069520 0.573574 3741
ky, = =2 sd, = 0.135335 0.189191 1.629150 9015

Growth rate Where the profit rate is created as:

of wage rate w, = 1e%0%* @ g, ~ N(0sd;?), sd; = e, wy =1
ky = -11  sd; = 1.670*107° 0.051271 0.000025
ky = -10  sd; = 4.540*107° 0.051271 0.000067
ks = 9 sd; = 1.234*107¢ 0.051271 0.000183
ky = -8 sd; = 3.355*107* 0.051271 0.000498
ky = =7 sd; = 9.119*107* 0.051271 0.001361
ky = —6 sd; = 0.002479 0.051278 0.003683
ky = =5 sd; = 0.006738 0.051317 0.009994
k; = -4 sd; = 0.018316 0.051629 0.027306
ky = -3 sd; = 0.049787 0.053865 0.074314
ky = -2 sd; = 0.135335 0.071079 0.208469

Growth rate Where labour is created as:

of labour L, = 1e9023¢ % 3u o~ N(0sd,2), Ly =1

sd, = 0.01 0.025535 0.020939

‘Redraws’ denotes the number of times an observation had to be redrawn to avoid its value
at any one point of time exceeding or falling below a certain limit. The labour share was
forced to fall within the ]0,1[ interval. With an imposed mean labour share of 0.6, the upper
limit is more likely to be reached than the lower limit, truncation is more likely to occur at the
upper limit, and for large shocks the mean of means is therefore biased downward. Due to the
truncation the mean standard deviation of labour share series for large shocks is also biased
downward. The profit rate was forced to be positive. For large shocks the mean of means is
therefore biased upward, while the mean standard deviation is biased downward. Large
shocks to the growth rate of a trend stationary process (wage rate and labour) lead to mean
growth rates of the series exceeding the imposed growth rate due to the asymmetrical nature
of the exponential function.
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The size of the other three shocks, namely the shock to the labour share, sd;,
to the profit rate, sd,, and to the wage rate, sd;, is then varied independently to
assume a wide range of values. The DGP of the labour share is an AR(1) with drift
0.06 and first order autoregressive parameter 0.9. (This process generates a labour
share series that looks credible and consistent with actual series. Graph available
upon request.) The profit rate follows a DSP with initial value of unity and zero
drift, while the wage rate follows a trend stationary process with initial value unity
and an imposed mean growth rate of 5%.!°

How is Table 4 to be interpreted? The table shows (see rows in bold), for
example, that standard deviations of the shock to the labour share of sd; = 0.01 and
sd; = 0.005 translate into standard deviations of the labour share of 0.01994 and
0.010003, respectively. A shock to the labour share of sd; = 0.01 implies, therefore,
that if the last period’s value of the labour share was 0.6, this period’s value will fall
within the interval 0.56 to 0.64 with a probability of 95% (i.e. 0.6 £ 2 x standard
deviation). If sd; = 0.005, this period’s labour share will be between 0.58 and 0.62
with the same probability. If, on the other hand, sd; = 0.1, the standard deviation
of the labour share is 0.182977, which is too high to be realistic (i.e. this period’s
labour share would fall between 0.234 and 0.965 in 95% of all cases).

In order to cover a wide range of values systematically, the standard deviations
of the shocks to the profit rate (sd,) and wage rate (sd;) are varied following an
exponential processes (see Table 4). For example, values of ., = -5 and &, = —4
imply a standard deviation of the normally distributed shocks to the profit rate of
sd, =0.0068 and sd, =0.0183, and a mean (across 1000 runs) standard deviation
of the growth rate of the profit rate of almost 0.7% and 4.0% (corresponding to a
+ 0.7 and * 4.0 percentage point change in the growth rate between two periods).
These values give rise to a growth rate of the profit rate that lies between —1.4% to
1.4% (0.000021 * (2x0.006816)) for k&, = -5 with a probability of 95% (mean *
two standard deviations). And for &, = —4, the corresponding growth rate interval
ranges from —8% and 8%.

For the growth rate of the wage rate, values of k5 = —5 and k3 = —4 (a standard
deviation in the shock of sd; = 0.0068 and sd; = 0.0183) imply mean standard
deviations of 1% and 2.7%, respectively. These values give rise to a growth rate of
the wage rate that lies between 3.13% and 7.13% for k3 = —5 with a probability of
95%, while for k3 = —4, the corresponding growth rate interval ranges from —0.30%
and 10.56%, respectively.

The graphs in the Appendix report the effects of a certain variation in the
growth rate of the profit rate, and a certain variation in the growth rate of the wage
rate, on the regression results for a given shock to the labour share. We show the
graphs for the case of sd; = 0.01 (We also used sd; = 0.001 and sd; = 0.1. The
graphs corresponding to these two shocks are available upon request.) They show
how, for very small values of the standard deviations of the shock to the profit rate
and of the shock to the wage rate (sd, and sd;, respectively), the coefficients of time,
labour, and capital are very accurately estimated with minimal standard errors and
significant coefficients (the expected coefficient of time equals the labour share
times the mean growth rate of the wage rate, 0.05, plus the capital share times the
mean growth rate of the profit rate, i.e. 0.6x0.05 + 0.4x0 = 0.03).

Three observations as to what happens to the coefficients when the variation in
the growth rate of the profit rate and/or in the growth rate of the wage rate increases,
are the following. First, once sd; exceeds a threshold level (i.e. the value of the shock
for which the coefficient estimates begin deteriorating) of sd; = e * (i.e. a standard



Why do Aggregate Production Functions Work 275

deviation of the growth rate of the wage rate of 2.73 percentage points) the
coefficients of time and labour move towards zero rapidly as long as sd, remains
smaller than e * (i.e., a standard deviation of the growth rate of the profit rate of
3.95 percentage points). The coefficient of capital, on the other hand, increases.
Second, once sd, exceeds a threshold level of sd, = e~ (i.e. a standard deviation of
the growth rate of the profit rate of 0.68 percentage points), the coefficients of time
and labour rise above their actual values as long as sd; remains smaller than e~ (i.e.
a standard deviation of the growth rate of the wage rate of 7.43 percentage
points).

The coefficient of capital, on the other hand, decreases. Thirdly, if sd, and sd,
both exceed e (i.e. standard deviations of 0.99% and 0.68%, respectively) all three
coefficients on a very narrow path of shock combinations may remain very accurate,
although the standard errors increase very rapidly (i.e. a high variation in the growth
rate of the profit rate leads to high coefficients of time and labour, while a high
variation in the growth rate of the wage rate leads to low coefficients of time and
labour, and vice-versa for capital; the result in case of a mix of these two influences
Is a narrow range where the coefficients remain accurate).

Throughout, the number of runs with significant coefficients of time and
labour (in 1000 runs) drops off rapidly from 1000 once sd; exceeds ¢*
independent of the size of sd,. The coefficient of capital exhibits similar
behaviour, except that the dependence on sd, and sd; is reversed.!” The R? value
remains very high across all values of sd, and sd;. It starts falling minimally once
sd, or sd; exceeds € °; it experiences its biggest fall, to a minimum value of
0.9980, once sd, = sd; = e 2 (i.e. a standard deviation of 162.91% for the
growth rate of the profit rate, and of 20.84% for the growth rate of the wage rate).
The Durbin—Watson statistic appears to vary almost independently of sd, and
reaches values close to two around sd; = e°. The null hypothesis of constant
returns to scale can practically never be rejected: rejections hover between 35 and
65 out of 1000 runs.

Comparing these results with the cases of sd; = 0.001 and sd; = 0.1 allows
a generalization of the above observations and some additional conclusions.

(1) The size of the shocks to the profit and wage rates relative to the size of the
shock to the labour share matters, i.e. the individual threshold levels of sd, and
sd; depend on sd;. The larger sd;, the larger may sd, and sd; be before
parameter estimates deteriorate. In the case of sd;, = 0.1, the coefficients
exhibit small unsystematic fluctuations around the actual values; however, the
standard errors of the parameter estimates increase with sd;.

(2) The size of the shock to the profit rate relative to the size of the shock to the
wage rate matters for all levels of the shock to the labour share, sd;. If only one
of the first two shocks exceeds a certain threshold level determined by sd,, then
parameter estimates drop off or rise sharply, and standard errors increase; the
number of runs with significant parameter estimates drops off depending only
on the size of the shock corresponding to this time series (where the coefficient
of time depends on sd;), unless sd, is relatively large, in which case the number
of runs with significant estimates of time and labour coefficients are low
throughout. If sd, and sd; jointly exceed a certain threshold level determined by
sd,, the parameter estimates across a narrow range of sd, and sd; combinations
may remain close to the actual values but their standard errors increase rapidly
and the R? value drops.
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(3) Even when sd, and sd; exceed their threshold levels, the R? value still remains
very high and close to unity across all levels of sd;.

(4) The Durbin—Watson statistic deteriorates quickly even in the case of the
smallest shock to the labour share, i.e. sd, = 0.001. It remains acceptable only
for a very narrow range of shocks sd, and sd;.

(5) The number of runs rejecting constant returns to scale is independent of the
variation in the labour share, and independent of the variation in the growth
rate of the profit rate and in the growth rate of the wage rate; it stays, correctly,
around 50 runs out of 1000 runs under all shock combinations.

Overall, the most remarkable feature is that already small variations in the growth
rates of the wage and profit rates make the Cobb—Douglas production function with
a time trend yield poor results; coefficient estimates are far from the factor shares
(but the R? value remains high due the presence of the identity). Only rather low
variation in the growth rates of the wage and profit rates, as well as very specific
combinations of higher variation in these growth rates, lead to good Cobb—Douglas
production function estimation results.

5. Revisiting the Empirical Evidence

The simulations in the previous section indicate an important result, namely, that
(small) variations in the growth rates of the wage and profit rates are responsible for
failures of the Cobb-Douglas production function with a time trend to perform
well. In fact, the variations in the simulations for which the Cobb—Douglas form
deteriorates are, in general, smaller than those displayed by actual series. On the
other hand, this functional form is very robust to variations in the factor shares. To
provide evidence that this is the case, we first fit equation (2) to time series for the
US for SIC 22 and SIC 36 for 1959-91, but only under the assumption of constant
factor shares (a, = ). This yields ¢, = aw, + (1 —a)¥, + al, + (1 — a)k,, and In
Q,=c+anw + (1-a)nr, + alnl, + (1 - a)ln K,, in growth rates and in levels,
respectively. If it is true that the parameters are (sufficiently) constant, all four
coefficients estimated unrestricted (denoted vy; for i=1,2,3,4) will be precisely
estimated, should be approximately equal to the factor shares (y; = v; = a; v, =
Y4 = l-a), and the regression should display a very high fit. Results are shown in
Table 5. This is confirmed for both cases and with the regressions in growth rates
(equation (2)) and in levels. The extremely high fits and high z-statistics, as well as
the proximity of the estimated coefficients (highly significant) to the factor shares in
both regressions can only be explained in terms of the accounting identity. Note the
small difference in R? between the regressions in levels and in first differences
(despite the difference in Durbin—Watson). What drives the high fit is clearly the
underlying accounting identity.

We can now return to the results obtained in Table 1 and compare them with
those here. The equations estimated were interpreted as Cobb—Douglas production
functions. However, in the light of our arguments, they can be interpreted as the
identity under the assumptions of constant factor shares and constant growth rates
of the wage and profit rates (i.e. equations (3) and (5)). The first regression is in
growth rates and the second in levels. In the first case, the weighted average of the
growth rates of the wage and profit rates becomes the constant; and in the second
case, the regression in levels, it is the parameter of the time trend. Recall that we
argued that these expressions are identical with the Cobb—Douglas production
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Table 5. Value added accounting identity

SIC 22: Textile and mill products

(A) g = vi W, + vof, + vzl + vak

Y1 Y2 Y3 Ys a o Max; Min
0.522 0.476 0.519 0.468 0.508; 0.045 0.579; 0.423
(27.00) (46.99) (22.90) (19.93)

R? = 0.998; DW = 1.36

BInQ =C+ vy lnw, +vy,Inr,m+ vy;InL, + v, InK,

Constant Y1 Y2 Y3 Ya
1.02 0.526 0.48 0.495 0.463
(16.78) (24.33) (41.21) (36.10) (33.45)

R? = 0.999; DW = 0.69

SIC 36: Electric and electronic equipment

(A) &t = Y1 V’ilr + 'YZFI + Y3 Zt + 'YALkz

Y1 Y2 Y3 Y3 ao Max; Min
0.507 0.502 0.503 0.502 0.48; 0.048 0.564; 0.404
(22.78) (62.75) (43.11) (34.22)

R? = 0.998; DW = 1.80

B)InQ, =C + vy;lnw, + v,Inr,m+ v;InL, + vy, InK,

Constant Y1 Y2 Y3 Y4
0.82 0.53 0.51 0.47 0.50
(17.60) (33.96) (54.69) (50.57) (62.20)

R? = 0.999; DW = 0.81

t-values in parenthesis. Data for the US for 1959-91. a is the average labour share; o is the
standard deviation; Max. and Min. are maximum and minimum values of the labour share,
respectively.

function, but need not be such. The estimated factor elasticities were far from the
factor shares, and the fit in the regressions in growth rates is substantially lower than
in the regressions in Table 5; while R? in the regressions in levels was still very high.
Given our previous arguments and the results in Table 5, we know now that the
reason behind the results in Table 1 must be the variability in the growth rates of the
factor prices, namely, that the weighted average of the growth rates of the wage and
profit rates is not well approximated with a constant (¢). Since the weighted average
of the factor prices is not well proxied by a constant, spuriousness matters a bit, as
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Table 6. Variability in factor prices

SIC 22: Textile mill products

Mean Max. Min. Stan. Deviation
W 0.024 0.108 -0.077 0.035
7 0.023 0.224 —-0.144 0.087

SIC 36: Electric and electronic equipment

Mean Max. Min. Stan. Deviation
W 0.026 0.049 -0.044 0.0195
7 0.0057 0.173 -0.217 0.086

discussed in Section 3 (the series are I(1)). Unlike in the regressions in Table 1, now
there is virtually no difference in fit as well as in the size of the estimated parameters
between the regressions in levels and in differences. However, there is still a
substantial difference in the Durbin—Watson. This simply ‘proves’ that spuriousness
is a secondary issue.

Table 6 shows that the standard deviations of the growth rates of the wage and
profit rates are well into the region where the parameters deteriorate, in particular
the standard deviation of the growth rate of the profit rates, which corresponds to
a shock value exceeding k, = -4 (see Table 4) in both examples.

Figures 1, 2 and 3 plot the growth rates of the wage and profit rates for the two
sectors considered (SIC 22, SIC 36), and the weighted average of the growth rates
of the wage and profit rates. The first two graphs show that the variation in the
growth rate of the profit rate is substantially higher than that in the growth rate of
the wage rate. The last one indicates that the weighted average cannot be well
approximated by a constant. As Shaikh (1980) showed, one would have to resort to
a complex time trend with sines and cosines.

How can one get such complex approximation? There is no textbook method to
obtain it. It is simply a matter of trial and error. We have already seen that factor
shares are sufficiently stable for regression purposes. Thus, we can construct an
approximation to the path of the weighted average of the wage and profit rates from
the identity under such an assumption. For example, for SIC22, and using the value
of the average factor shares, i.e. @ = 0.508 and (1 — @) = 0.492, such a path is
(0.508xInw, + 0.492xInr,). this is shown in Figure 4. Now all we have to find is the
appropriate mathematical form to track it. Through trial and error we constructed
A@) = [T - Sin(T) — Cos(T) — Sin(T?) — Cos(T?) + Cos(T?) + Sin(T*) +
Cos(T®)], where T is a time trend, ‘Sin’ is the sine function, and ‘Cos’ is the cosine
function. Estimation results are (z-values in parenthesis):

InQ, = 0.0185 x A(z) + 0.577 x InL, + 0.552 x InK,
(3.00) (2.19) (3.03)
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Certainly this form is not perfect yet (the correlation between the path
(0.508xlnzw, + 0.492xInr,) and A(z) is 0.923), but a comparison with the results
displayed in Table 1, when the linear time trend was used, is indicative of the great
improvement, in particular in terms of the proximity of the estimates to the factor
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Fig. 3. Weighted average of the growth rates of the wage and profit rates.

6. Conclusions

This paper has analysed why aggregate production functions appear to fit (at least
sometimes) in the light of Fisher’s work on aggregation and Shaikh’s work with the
accounting identity. It is rather unfortunate that despite this important body of
work, economists still refer to the aggregate production function as a summary of
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Fig. 4. Weighted average of the wage and profit rates.
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the aggregate technology. Fisher (1971) used simulation analysis to study the
empirical conditions under which the Cobb-Douglas function would work well.
This was that factor shares had to be constant. However, Shaikh (1980) showed that
Fisher’s observation was simply the result of the fact that underlying all aggregate
production functions there is the income identity that relates output to the sum of
the wage bill plus total profits.

This paper has elaborated on the issue, and has related Fisher’s simulations to
Shaikh’s arguments by explicitly linking the variables in the production function and
the income identity. Likewise, the statistical properties of the data (e.g. the presence
of unit roots) have been considered. We have used Monte Carlo simulations to
answer two questions. First, how much spuriousness can help explain the relatively
good fits of the Cobb—Douglas production function? The simulations show that the
contribution of spuriousness to a high R? is minor once we properly account for the
fact that input and output data used in production function estimations are linked
through the income accounts, i.e. output equals wages plus profits, in value terms.
It is mostly the link through this identity that explains the results. Secondly, we have
studied how much factor shares have to vary in an economy so as to render the
Cobb-Douglas production function with a time trend a bad choice for modelling
and estimation purposes.

We conclude that the Cobb-Douglas form is robust to relatively large
variations in the factor shares. However, what makes this form quite often fail are
the variations in the growth rates of the wage and profit rates. The weighted average
of these two growth rates has been shown to be the coefficient of the time trend. This
implies that, in most applied work, a Cobb—Douglas form (i.e. approximation to the
income accounting identity) should work. We just have to find which Cobb—Douglas
form with a dose of patience in front of the computer.
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1. Solow, being aware of the aggregation problems, once claimed: ‘I have never thought of the
macroeconomic production function as a rigorously justifiable concept. In my mind it is either an
tlluminating parable, or else a mere device for handling data, to be used so long as it gives good
empirical results, and to be abandoned as soon as it doesn’t, or as soon as something better comes
along (Solow, 1966, 1259-1260; italics added).

2. In an unfortunately unknown paper, the Nobel Prize Laureate Herbert Simon (1979) had argued in
a similar way.

3. For example, recently Mankiw commented: [. . .] I have always found the high R? reassuring when
I teach the Solow growth model. Surely, a low R? in this regression would have shaken my faith . .
Mankiw (1997, 104).

4. Interestingly, this literature provides a theoretical justification for why the elasticities may differ from
the factor shares, contrary to Fisher’s initial motivation (i.e. that usually elasticities equal the factor
shares). Romer (1987) even talked about a ‘suggestive puzzle.’ In fact, in empirical work with the
Cobb—Douglas, most often the elasticities do not equal the factor shares.

5. LEETS is simply the word STEEL spelled backwards. This is how Joan Robinson did it, in honour
of J. E. Meade.
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6. Fisher (1971) used the identity to generate total profits residually; and used the marginal productivity
condition of labour to allocate the latter efficiently. But for the Cobb-Douglas this condition is that
w, = a(Q/L,). However, it can be seen that this expression also follows from the definition of the
labour share a, = (w, L,)/Q,, under the assumption that the labour share is constant. See Shaikh
(1980).

7. For a recent use of cointegration analysis in production functions see Otto & Voss (1996).

8. One could argue that most studies today do not fit the production function directly, as discussed here
(e.g. Caballero & Lyons, 1992; Mankiw et al., 1992; Basu & Fernald, 1995). These other cases are
analysed in Felipe (2001). It is shown that they are special cases of the one considered here.

9. The regressions here-—in contrast to those of Nelson & Kang—are run in logarithms. Taking the
logarithm of a negative value is avoided by choosing a sufficiently large positive first-period value of
1000 in combination with Nelson & Kang’s N(0,1) shock. Running a regression in logarithms of one
random walk on an unrelated second random walk with initial values 1000 we fully reproduce Nelson
& Kang’s results.

10. If all DSP processes include a drift of 0.5 the R? value reaches 0.9743 (dropping to 0.0201 once the
regression is run in first differences), but otherwise there is no systematic difference to the version
without drift.

11. We could have chosen a smaller shock or a larger initial value than the ones used here (g, ~ N(0,1),
X, = 1000). This is not a problem. All that matters here is to show the effect of the accounting
identity link.

12. The initial value of each variable does not matter. We leave it at 1000. We have introduced a shock
2, to the growth rates in order to avoid the perfect multicollinearity that appears in the case of a
perfectly constant labour share and perfectly constant growth rates of the wages and profit rates.

13. The model estimated was:

4 =B+ dyg1 + 8k + B3l + B4k, + sk + MO+ 2L + MK+ ou,

where the long-run elasticities are given by m; = —(A, / A|) and m, = —(A5/ A3).

14. Fisher (1971, p. 312) indicates that in some cases he obtained ‘ridiculous’ coefficients.

15. Throughout all estimations that follow below we impose restrictions in our simulations. The labour
share cannot exceed unity or fall below zero; the profit rate, wages and employment cannot fall below
zero. If any of them does, its value is redrawn.

16. Introduction of a drift in the profit rate process would yield a growth rate different from zero, but
since the growth rate would continuously decrease across 1000 observations, the objective of
relaxing the assumption of constant growth rates by applying a shock of potentially equal size in each
period would not be achievable.

17. The only exception is the standard errors, which increase rapidly as either sd, or sd; exceeds e ® but
then drop off again once sd, or sd; exceeds & >—possibly due to the large technical impact of
truncation on the mean growth rate of the profit rate as well as its variation (see Table 4).

18. Felipe & Adams (2001) and Felipe & McCombie (2001b) have also approximated the weighted
average of the growth rates of the wage and profit rates through complex functions with two other
different data sets. In both cases the approximations provide quasi-perfect fits. It is simply a matter
of trial and error, and a lot of patience in front of the computer.
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